High frequency viscoelastic measurements of fluids based on microcantilever sensing: New modeling and experimental issues
نویسندگان
چکیده
In general, microrheology is carried out using active or passive particle-tracking techniques. In the present paper, a novel technique based on the out-of-plane bending vibrations of a microcantilever beam immersed into a liquid is proposed for microrheological property measurement. We propose to analytically link the damped beam motion with the rheological properties of the fluid in order to establish a dynamic rheogram which spans at least one decade of the kiloHertz frequency domain. The latest improvements in terms of both analytical modeling and experimental set-up are detailed, along with a complete explanation of the calculation method. Four rheograms of Newtonian and nonNewtonian liquids obtained from the frequency response of three immersed cantilevers of different geometries are presented.
منابع مشابه
Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids.
We present a novel experimental method to measure linear viscoelastic moduli of complex fluids using dynamic light scattering. A generalized Langevin equation is used to relate the mean square displacement of a probe particle to the storage and loss moduli of the bulk complex fluid. We confirm the experimental validity of this technique by comparing the light scattering results with mechanical ...
متن کاملA New Structure for Direct Measurement of Temperature Based on Negative Temperature Coefficient Thermistor and Adaptive Neuro-fuzzy Inference System
Thermistors are very commonly used for narrow temperature-range high-resolution applications, such as in medicine, calorimetry, and near ambient temperature measurements. In particular, Negative Temperature Coefficient (NTC) thermistor is very inexpensive and highly sensitive, whose sensing temperature range and sensitivity are highly limited due to the intrinsic nonlinearity and self-heating p...
متن کاملDevelopment of a rheological model for polymeric fluids based on FENE model
Rheological models for polymer solutions and melts based on the finitely extensible non-linear elastic (FENE) dumbbell theory are reviewed in this study. The FENE-P model that is a well-known Peterlin approximation of the FENE model, indicates noticeable deviation from original FENE predictions and also experimental results, especially in the transient flow. In addition, both FENE and FENE-P mo...
متن کاملDynamic Modeling and Control of Integrated Micro- and Nano- systems: A.1. Coupled Flexural-Torsional Nonlinear Vibrations of PZT-actuated Microcantilevers: The problem of coupled flexural-torsional nonlinear vibrations of a piezoelectrically-actuated microcantilever beam as a typical configuration utilized in microcantilever-based sensing
The problem of coupled flexural-torsional nonlinear vibrations of a piezoelectrically-actuated microcantilever beam as a typical configuration utilized in microcantilever-based sensing is being investigated. The actuation and sensing are both facilitated through bonding a piezoelectric layer (here, ZnO) on the microcantilever surface. Considering different geometrical configurations for the bea...
متن کاملInfluence of Fluid-Structure Interaction on Microcantilever Vibrations: Applications to Rheological Fluid Measurement and Chemical Detection
At the microscale, cantilever vibrations depend not only on the microstructure’s properties and geometry but also on the properties of the surrounding medium. In fact, when a microcantilever vibrates in a fluid, the fluid offers resistance to the motion of the beam. The study of the influence of the hydrodynamic force on the microcantilever’s vibrational spectrum can be used to either (1) optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017